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EFFECTS OF CHROMATICITY 

SEXTUPOLES ON THE INS LATTICE 

King-Yuen Ng 

Institute for Nuclear Study, University of Tokyo, Tanashi, Tokyo 88 

and 

Fermi National Accelerator Laboratory, Batavia, IL 60510 

(!Vovember, 1996) 

A first medium size imaginaryq proton synchrotron 

is to be built at KEK in Japan. The chromaticity- 

correction sextupoles placed inside the modules are not 

designed for nonlinearity confinement or cancellation. 

The effects of these sextupoles as contributing to non- 

linearity and beat factors are studied. 



I INTRODUCTION 

In order to reduce beam loss, the 50-GeV proton synchrotron designed by the 

Institute for Nuclear Study of Japan (INS) will operate with an imaginary-yt [ 11. 

The flexible momentum-compaction (FMC) modules [2] in the lattice are roughly 3 

FODO-cell long. To cancel chromaticities, there will be in general less locations to 

place the sextupoles, and these sextupoles are repeated every module instead of every 

FODO cell as in the conventional FODO-cell lattice. As a result, these sextupoles 

will be stronger and the cancellation of their nonlinear effects will not be as easy. In 

this note, we are going to analyze the effects of these chromaticity sextupoles, hoping 

that they would not be too intolerable. 

II SMEAR 

For truly linear motion, the particle trajectory in a transverse phase space at a 

certain location along the ring maps out in a Poincare section a perfect ellipse which 

is an invariant. In the presence of nonlinearities, however, the trajectory fluctuates 

about the ellipse from turn to turn. The rms fractional value of this fluctuation is 

called the single-particle smear. Based on past accelerator experience [3], the linear 

aperture of the Superconducting Super Collider (SSC) is defined [4] quantitatively as 

the region within which the smear is less than 7% and the on-momentum tune shift 

with amplitude is less than 0.005. For example, in the experiment E778 performed 

at the Fermilab Tevatron, the multiparticle smears were measured [5] for various 

sextupole excitation currents. The results appeared to agree excellently with multi- 

particle simulations. Single-particle trackings were then performed with exactly the 

same machine inputs as the multiparticle simulations to convert the observed smear 

of the beam to that of a single particle. In fact, the horizontal smear has been com- 

puted using first-order perturbation theory and the results agree with tracking [6]. 

Here, we are going to extend the formulas to include both transverse planes. The 

derivation follows closely those in Ref 5. 

The distortion of the horizontal amplitude A, at horizontal phase advance & and 

that of the vertical particle amplitude A, at vertical phase advance ?,& of a particle 
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are given by [ 7, 81 

Sdx($x) = dz[(A, sin p2: - Br cos pZ) + (A3 sin 3q, - Bs cos 3~~) 

- di[(A+ sin p+ - B+ cos q~+) - (A- sin y- - B- cos p-) 

+ 2(rI sin vZ - B cos cp,)] , 

Sd,($x> = -2dxA,[(A+ sin v+ - B+ cos y+) + (A- sin y3- - B- cos cp-)] . (2 1) . 

Here, Br, Bs, B, B+, and B- are the 5 distortion functions introduced by Collins [7,9, 

lo]. The A's are the derivatives of the B’s, similar to the situation that the Courant- 

Synder cy’s are the derivatives of the betatron functions pk. They are evaluated at 

I/I~ and the corresponding I/&. Note that only $J, is included in the argument of d, 

and A, because $n and tiY are related. The distortion functions depend linearly on 

the strength of the kth sextupole placed along the ring through two parameters: 

sk = ii? -+ [(g)1'2$jk , Sk =;h&$$)1'2$i$]k , (2.2) 

where /?n is just some reference betatron function for dimensional purpose and is set 

to 1 m for convenience. The phases yZc, ‘pY (p* = 29, IIZ pz) are the instantaneous 

phases of the particle describing its instantaneous positions along the ellipses of the 

horizontal and vertical Poincare sections. The amplitudes Sd, and 6d, are related 

to the invariant emittances by 

6, 

7;d; =- 
P 

7 cY 

nd; 
=- 

P 
. 

0 0 
(2 3) . 

The single-particle smears at phase advance $J, in the horizontal and I,!+, in vertical 

phase spaces are defined as the fractional rms distortions: 

l/2 S,(J!J,) = @$J2) ) ( ) 
112 

X 

Sy(?),) = @$J2) . 
i ) Y 

(2 4) . 

This implies the averaging over the instantaneous phases px and py. The results are 

S; = +d;(A$+B;+ A;+@)- 2d;(A,A+B,@ 

dil +=(A: + B; + A? + B! + 4A2 + 4B2) , 
X 

(24 

S; = 2d;(A$+B:+ A:+Bt). 

3 



A family of thin sextupole of integrated strength -0.10 rns2 each is placed close 

to the first D-quadrupole of the FMC module. Two other families of sextupoles are 

placed near the inner D-quadrupoles and center F-quadrupoles in each FMC module. 

These latter families are then adjusted to null out the chromaticities of the whole 

ring. The rms smears are computed for the reference 4-6-3 lattice [l] for the 50 GeV 

JHP ring designed by the INS and are plotted in Figs. 1 and 2 for a quarter of the 

ring, assuming emittances of E, = Ey = 507r x 10s6 m. Figure 2 is for the first family 

of sextupoles set to -0.10 rns2 while Fig. 1 is for this family of sextupoles not to 

be excited. It is clear that with this extra family of sextupoles, the smears become 

smaller. We see that the rms vertical smear reaches only 0.15%) which is very small, 

and the rms horizontal smear are still smaller. The full smears will be roughly 

times the rms values, which are much less than the SSC criterion. This lattice has 

a 4fold symmetry. The smears computed for one quarter would be the same as the 

smears for the whole ring. We also see that the vertical smear is constant and has 

a jump only when it encounters a sextupole. This reflects exactly the properties of 

the distortion functions. The horizontal smears behave similarly, although there is 

an interference term between (Al, B1) and (A, B). 

For a regular FODO-cell lattice, we usually prefer 60” or 90” phase advances in 

both transverse planes so that the distortions will be cancelled in every 6 or 4 cells, 

respectively. Otherwise, the distortion waves will flow along the whole ring and can 

accumulate to big values. For flexible momentum-compaction modules, one would 

prefer 270” horizontal phase advance and 180” vertical phase advance for the same 

cancellation. The FMC module in the present lattice has horizontal and vertical 

tune advances of 0.74051 and 0.53038, respectively. However, the smears are small 

and therefore the requirement of special phase advances will not be necessary. The 

largest contribution of the smears comes from B+. This is because including the long 

straight sections, the betatron tunes of the whole ring is v, = 21.7723, vy = 15.1462, 

and 2v, + vX = 52.0648, which is too close to a third-order sum resonance. 

III AMPLITUDE DEPENDENCE OF TUNES 

Another measure of nonlinearity is the amplitude dependence of betatron tunes. 

If the dependence is large, the tune spreads may overlap a major resonance, thus 
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decreasing the dynamical aperture of the ring. 

In terms of the distortion function, the lowest-order tune spreads due to sextupoles 

are: 

Av, = -2 C(BsS + 3&s)k - 2 x(B+s + B-3 - 2&)r, , 
k k 

4 d2 
Av, = -% C(B+s + B-3 - 2&.?)k - -fx(B+s - B-3 + @s)l, , (3 1) . 

k k 

where the summation goes over all the sextupoles which are assumed to be thin. For 

a ring with N-fold symmetry, it can be shown that the tune spreads are just N times 

the tune spread of one superperiod. The total tunes of the whole ring are 

v, = 21.7723 + 126” - 1463 
7r n ’ 

vy = 15.1462 - 146” + 1483 , (3 2) . 
7r n 

where the emittances are measured in m. The magnitude of the family of sextupoles 

near the entrance D-quadrupole of each FMC module has been carefully adjusted 

to -0.10 rns2, so that 3 detunings are of roughly the same magnitude and have the 

desirable signs. We see that with cz = cy = 507r x 10B6 m, the largest tune spread 

is only 0.0074. The SSC has been designed as a storage ring and therefore the more 

stringent linearity criterion of SV < 0.005 is desired. Here, the JHP is not designed 

for storage and SV < 0.0074 is therefore quite acceptable. 

In general, there are two ways to reduce the detunings of a ring consisting of FMC 

modules. The first way is to arrange the sextupoles inside one FMC module in such a 

way that the detunings for one module are small, for example, spacing two sextupoles 

of the same family 180” apart. The second way is to construct different types of FMC 

modules with the same matching Twiss parameters, so that the detunings for different 

types will have different signs. An example of the latter is given in a design of the 

Fermilab Main Injector lattice [ll]. Th us, the total detunings of the whole ring will 

be cancelled to a certain extent. However, such attempts are not necessary for the 

IXS lattice, because the det unings are already small. 

IV BETATRON BEATINGS 

Particles with a momentum offset S will see a different set of betatron functions. 
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The fractional changes in betatron functions are called “beat factors”. At a phase 

advance $J, the beat factor per unit momentum offset is given by [12] 

w 1 ++27ru 

P 1L = -2sin27rv + J 
k($‘)p”($) cos 2(w + q+ - $‘)d$’ ’ (4 1) ’ 

In the above, the phase advance $J: field gradient k, and tune Y assume their horizontal 

or vertical values for the horizontal or vertical beat factor. Note that the field gradient 

k(+) along the ring receives contribution from the quadrupoles, the sextupoles, the 

centripetal force of the dipoles, and also the dipole edges. In an ideal FODO-cell 

lattice, chromaticity-correction sextupoles are placed just next to the quadrupoles. 

The beat factors will be very small since they receive contributions from the dipoles 

only. Here, in the INS lattice with FMC modules, sextupoles are not placed beside 

every quadrupole. As a result, a sizable beat wave will propagate in the lattice. 

Figure 3 shows the beat factors per unit momentum spread before any sextupole is 

fired, and Fig. 4 shows the beat factors when 3 families of sextupoles are excited to 

null the chromaticities. We see that the the beat factors actually increase when the 

sextupoles are excited. This is because the phase advances between the modules do 

not allow the effects of the sextupoles to cancel. However, for a momentum spread of 

6 = 0.5%, the maximum beat factor is only S%, which is not too much. 

The beat factor can be made complex by introducing the imaginary part 

Aa+% - d AP 1 J 
$+2Tv 

p $- - &EjF += -2sin27rv 4 
k($‘)p”($‘) sin2@ + $J - @)d$’ . 

(4 2) . 
If we denote the real part by B and the imaginary part by A, the vector (B, A) rotates 

at a tune of 2u when there is no field gradient. Whenever it passes through a field 

gradient k of infinitesimal length e, A increases by 

Pkl AA=-- 
2 (4 3) . 

while B remains unchanged. Thus the magnitude of the beat vector is an invariant 

unless it passes through a field gradient. These magnitudes are plotted in Fig. 5 and 

6 for the situation before and after the correction sextupoles are excited. 

The harmonic analysis of the beat factors are also important, because it gives us 
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Each beat factor can be written as a clue to reduce the beat factors. 

fv 
p 

v J+ ;p+,lu 

= -- 
c 

4 T P 
4u2 - p2 ’ (4 4) . 

where the summation extends over all positive and negative integers and the Fourier 

components are given by 

J 
2TU 

Jp = k(~‘)~2(~‘)e-iP.rL’/ud~’ . 
0 

(4 5) . 

For a left-right symmetric lattice, choosing the point of symmetry as the point having 

zero phase advances, the Jp’s become real. Each beat factor can now be rewritten as 

AB Jo 2V Jp cos d 
- =---- 

p 1L 2nv n p>. 4u2 - ;2 ‘I c (4 6) . 

where 

Jp = J Fu k(y!+32($‘) cos ‘1s”d$ . (4 7) . 
-TU v 

The INS lattice has a left-right symmetry except for the third family of sextupoles 

which is placed only at one side of the entrance D-quadrupole of each module. How- 

ever, the asymmetry is small and so are the lin Jp’s. Therefore, we can assume the 

Jp’s to be real. 

Since the lattice is 4-fold symmetric, Jp vanishes unless p is a multiple of 4. By 

definition, Jo = 0 for both horizontal and vertical because the chromaticities are zero. 

Some of the lower-order Jp’s have been computed and are listed in Table I. The 2nd 

and 6th columns show the contributions of the quadrupoles, while the 3rd and 7th 

columns the contributions of the sextupoles. The total contributions including those 

from the dipoles are listed in the 4th and 8th columns. In the 5th and 9th columns, 

we list the contributions of Jp’s to their respective beat factor per unit momentum 

offset as is indicated in each term of the summation of Eq. (4.6) but not including 

the cosine term. 

We first notice that the Jo’s are not exactly zero. This is because Eq. (4.7) is 

only first order; for example, the betatron function used inside the integral is only 

the unperturbed one. Nevertheless, this gives us a measurement of the error involved. 

The contributions of the sextupoles are exactly -4n times the chromaticities. 
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We see that the sextupoles do produce beat waves in the harmonic space. This 

is because they have not been placed at the proper phase advances for confinement 

or cancellation. The tunes of the lattice are V, = 21.7723 and yy = 15.1462, so 

that the important Fourier components are p = 44 for the horizontal and p = 28 

and 32 for the vertical. The horizontal J 44 = 12.72 and is small compared to, for 

example, the sextupole contribution of Jo. For the vertical, J32 = -30.65 may also 

be considered as small. But J28 = -161.53 is large and contributes 46.62 to Ap,/p,. 

This comes about because the straight section has a vertical phase advance of 0.60 

which is not too far from the vertical phase advance of 0.53 for each FMC module. 

Thus, the contributions of the sextupoles add up. In fact, we can see from Fig. 4 that 

the vertical beat factor does have roughly a 7-fold symmetry in a superperiod. To 

reduce this contribution, the vertical phase advance of the straight section must be 

increased. 

The beat factors are closely related to the integer and half-integer stop bands. 

There are also other stop bands originated from the sextupoles. For example, if 

the horizontal tune is tuned to near V, = 21.667 instead, there will be a resonance at 

3v, = 65. However, this is not important because of the 4fold symmetry of the lattice. 

On the other hand, it will be extremely bad to tune the lattice to v,: = 21.333, because 

the resonance 3u, = 64 is a systematic one, since 64 is divisible by 4. As was discussed 

in Sec. II, the third-integer resonance 2v, + V, = 52 will also be excited. Therefore, 

it will be nice to redesign the straight section, so that the vertical phase advance will 

become, say, 0.8 instead. In this way, both the third-integer sum resonance and the 

large vertical beat factor at harmonic 28 can be avoided. 
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Table I: The horizontal and vertical Jp’s of the INS lattice, showing 

their cant ri but ions from the quadrupoles and sext upoles. 

Horizontal Jp Vertical Jp 

P quads sext. total Ap/p quads sext. total W/P 

0 -323.79 325.20 0.42 -0.00 -263.90 

4 -2.08 71.27 68.99 -2.03 3.72 

8 1.59 -65.43 -63.68 1.92 -2.94 

12 -0.94 55.39 54.35 -1.72 1.65 

16 0.48 -40.11 -39.60 1.34 0.12 

20 -1.00 16.13 15.13 -0.57 -2.13 

24 5.18 31.41 36.63 -1.54 3.48 

28 -43.97 -289.12 -333.66 16.63 19.51 

32 -40.82 -205.18 -246.51 15.67 18.05 

36 23.42 79.73 103.36 -9.55 -17.53 

40 -18.97 -32.73 -51.79 9.70 17.31 

44 16.87 -4.14 12.72 17.69 -15.12 

48 -16.67 43.11 26.50 3.60 9.52 

52 21.03 -96.68 -75.73 -5.20 2.99 

56 -48.29 234.18 185.92 8.31 -70.92 

60 - 124.29 398.05 273.56 8.90 -26.87 

64 32.74 -26.86 5.90 0.15 -0.71 

267.80 

50.33 

-48.57 

45.18 

-39.32 

29.48 

- 10.06 

-180.79 

-48.58 

19.60 

-4.37 

-4.75 

5.72 

12.91 

-221.64 

-152.10 

84.75 

2.69 -0.06 

53.83 -2.30 

-51.35 2.32 

46.70 -2.32 

-39.13 2.28 

27.32 -2.04 

-6.58 0.75 

-161.53 46.62 

-30.65 -11.12 

2.15 0.22 

12.88 0.73 

-19.85 -0.75 

15.23 0.42 

15.90 0.34 

-292.68 -5.09 

- 179.04 -2.57 

84.07 1.02 



References 

[l] This analysis is based on the most recent lattice design released by the INS. 

[2] S.Y. Lee, K.Y. Ng, and D. Trbojevic, Phys. Rev. E48, 3040 (1993). 

[3] D. Edwards, SSC Central Design Group Report No. SSC-22 (1985); T.L. Collins, 

SSC Central Design Group Report No. SSC-26 (1985). 

[4] Conceptual Design of th S p e u erconducting Super Collider, Ed. J.D. Jackson, SSC 

Central Design Group Report No. SSC-SR-2020 (1986). 

[5] A.W. Chao, et al, SSC Central Design Group Report No. SSC-156 (1988). 

[6] N. Merminga and K. Yg, Analytic Expressions for the Smear due to Non-linear 

Multipoles, Fermilab Report FN-505, 1989. 

[7] T. Collins, Fermilab Internal Report 84/114. 

[8] K.Y. Ng, Derivation of Collins Formulas for Beam-shape Distortion due to Sex- 

tupoles using Hamiltonian Method, Fermilab Report TM-1281 (1984). 

[9] K.Y. Ng, D is or ion t t Functions, KEK Report 87-l 1 (1987). 

[lo] N. Merminga and K. Ng, Hamiltonian Approach to Distortion Functions, Fermi- 

lab Internal Report FN-493, 1988. 

[ll] S.Y. Lee, K.Y. Ng, and D. Trbojevic, Design and Study of Accelerator Lattices 

without Transition, Fermilab Report FN-595 (1992). 

[12] E.D. Courant and H.S. Snyder, Ann. Physics 3, 1 (1958). 

10 



0.00 150 I I I I I I I I I I I I I I I I 

First family sextupole off 

0.00125 - 

0.00100 - -* 

- - - - - - - - - - -- --- - - - - - - - 
0.00075 -- - -. _. ----- . ._ 

0.00050 - 

0.00025 - 

u u 

o.ooooot ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ I ’ ’ ’ ’ ’ 1 
0 100 200 300 400 

Distance in m (one quadrant) 

Figure 1: Horizontal (solid) and vertical (dashes) smears of the INS lattice when only 

two families of sextupoles are excited. Only one superperiod of the lattice is shown 

starting from the center of a straight section. 
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Figure 2: Horizontal (solid) and vertical (dashes) smears of the INS lattice when 

three families of sextupoles are excited. Only one superperiod of the lattice is shown 

starting from the center of a straight section. 
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Figure 3: Horizontal (solid) and vertical (dashes) beat factors of the INS lattice 

when all the sextupoles are not excited. Only one superperiod of the lattice is shown 

starting from the center of a straight section. 
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Figure 4: Horizontal (solid) and vertical (dashes) beat factors of the INS lattice when 

three families of sextupoles are excited. Only one superperiod of the lattice is shown 

starting from the center of a straight section. 
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Figure 5: Magnitudes of the complex horizontal (solid) and vertical (dashes) beat fac- 

tors of the INS lattice when all the sextupoles are not excited. Only one superperiod 

of the lattice is shown starting from the center of a straight section. 
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Figure 6: Magnitudes of the complex horizontal (solid) and vertical (dashes) beat 

factors of the INS lattice when three families of sextupoles are excited. Only one 

superperiod of the lattice is shown starting from the center of a straight section. 
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